Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 189
Filtrar
1.
Front Neurosci ; 18: 1329832, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38629048

RESUMO

Introduction: The foot sole endures high magnitudes of pressure for sustained periods which results in transient but habitual cutaneous ischemia. Upon unloading, microvascular reactivity in cutaneous capillaries generates an influx of blood flow (PORH: post-occlusive reactive hyperemia). Whether pressure induced cutaneous ischemia from loading the foot sole impacts mechanoreceptor sensitivity remains unknown. Methods: Pressure induced ischemia was attained using a custom-built-loading device that applied load to the whole right foot sole at 2 magnitudes (15 or 50% body weight), for 2 durations (2 or 10 minutes) in thirteen seated participants. Mechanoreceptor sensitivity was assessed using Semmes-Weinstein monofilaments over the third metatarsal (3MT), medial arch (MA), and heel. Perceptual thresholds (PT) were determined for each site prior to loading and then applied repeatedly to a metronome to establish the time course to return to PT upon unload, defined as PT recovery time. Microvascular flux was recorded from an in-line laser speckle contrast imager (FLPI-2, Moor Instruments Inc.) to establish PORH peak and recovery rates at each site. Results: PT recovery and PORH recovery rate were most influenced at the heel and by load duration rather than load magnitude. PT recovery time at the heel was significantly longer with 10 minutes of loading, regardless of magnitude. Heel PORH recovery rate was significantly slower with 10minutes of loading. The 3MT PT recovery time was only longer after 10 minutes of loading at 50% body weight. Microvascular reactivity or sensitivity was not influenced with loading at the MA. A simple linear regression found that PORH recovery rate could predict PT recovery time at the heel (R2=0.184, p<0.001). Conclusion: In populations with degraded sensory feedback, such as diabetic neuropathy, the risk for ulcer development is heightened. Our work demonstrated that prolonged loading in healthy individuals can impair skin sensitivity, which highlights the risks of prolonged loading and is likely exacerbated in diabetes. Understanding the direct association between sensory function and microvascular reactivity in age and diabetes related nerve damage, could help detect early progressions of neuropathy and mitigate ulcer development.

2.
Nano Lett ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602471

RESUMO

Mimicking the function of human skin is highly desired for electronic skins (e-skins) to perceive the tactile stimuli by both their intensity and spatial location. The common strategy using pixelated pressure sensor arrays and display panels greatly increases the device complexity and compromises the portability of e-skins. Herein, we tackled this challenge by developing a user-interactive iontronic skin that simultaneously achieves electrical pressure sensing and on-site, nonpixelated pressure mapping visualization. By merging the electrochromic and iontronic pressure sensing units into an integrated multilayer device, the interlayer charge transfer is regulated by applied pressure, which induces both color shifting and a capacitance change. The iontronic skin could visualize the trajectory of dynamic forces and reveal both the intensity and spatial information on various human activities. The integration of dual-mode pressure responsivity, together with the scalable fabrication and explicit signal output, makes the iontronic skin highly promising in biosignal monitoring and human-machine interaction.

3.
Nano Lett ; 24(13): 4002-4011, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38525900

RESUMO

Empowering robots with tactile perception and even thinking as well as judgment capabilities similar to those of humans is an inevitable path for the development of future robots. Here, we propose a biomimetic electronic skin (BES) that truly serves and applies to robots to achieve superior dynamic-static perception and material cognition functionalities. First, the microstructured triboelectric and piezoresistive layers are fabricated by a facile template method followed by selected self-polymerization treatment, enabling BES with high sensitivity and a wide detection range. Further, through laminated-independent triboelectric and piezoresistive parts for perceiving dynamic and static pressures simultaneously, the BES is capable of supporting the robot hand to monitor the entire process during object grasping. Most importantly, by further combining a neural network model, an intelligent cognition system is constructed for real-time cognition of the object material species via one touch of the robot hand under arbitrary pressures, which goes beyond the human cognition ability.


Assuntos
Ácidos Alcanossulfônicos , Robótica , Dispositivos Eletrônicos Vestíveis , Humanos , Biomimética , Cognição , Percepção
4.
Vet Res Commun ; 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38427268

RESUMO

OBJECTIVE: This preliminary study suggests a way to artificially extend vibrissae of blind dogs to assist ambulation and avoiding facial contact with obstacles. PROCEDURES: Fourteen irreversibly blind dogs had 5-6 mystacial vibrissae on each side of the face supplementally extended by attaching carefully chosen adult pig hairs to them and were subjected to a maze test before and after the procedure. In three of these dogs the test was repeated one more time after all the extensions had fallen off. Collision counts and course times with and without extensions were analyzed and compared. A p-value > 0.05 was considered significant. RESULTS: Median number of collisions was significantly higher post-extensions (5 IQR 2.25) and after extensions had fallen off (4 IQR 7.50) compared to pre-extensions (1 IQR 1), p = 0.021. Median times were significantly higher pre-extension (25.6 IQR 8.98) and after the extensions had fallen off, compared to the post-extension performance (22.8 IQR 8.55), p = 0.04. CONCLUSION: Vibrissae play an important role in the tactile perception of blind dogs, and our preliminary results suggest that extending this sensory organ possibly improves obstacle location and their quality of life.

5.
Physiol Behav ; 277: 114486, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38336088

RESUMO

Oral perception of food particles is important in mastication and swallowing. However, the mechanism underlying particle perception remains poorly understood because of the lack of suitable experimental systems. We evaluated microparticle perception in rats utilizing insoluble cellulose particles of varying diameters (20-170 µm). The cellulose additives have polycrystalline morphologies and contain smaller crushed particles. The filtrate containing 20 µm particles at a concentration of 1.6% was passed through 3 µm pore-size filter paper, and numerous small particles equivalent to a 0.25 mM soluble solution were observed. In two-bottle preference tests, rats showed no innate preference or avoidance of particles of any size at concentrations ranging from 0.05-1.6%. Next, conditioned preference learning tests employing 8% glucose and fructose solutions were performed. After being repeatedly presented with glucose and fructose solutions containing particles of different sizes (170 and 20 µm particles or 20 µm filtrate) at a concentration of 1.6%, the rats preferred particles in glucose solution even without glucose presentation. Intriguingly, rats preferred the filtrate following repeated presentations of glucose-containing filtrate and water containing fructose. These results suggest that rats can distinguish microparticles in water. The preference learning test is useful for analyzing particle perception mechanisms in mammals.


Assuntos
Celulose , Condicionamento Clássico , Ratos , Animais , Celulose/farmacologia , Frutose/farmacologia , Glucose , Água , Preferências Alimentares , Mamíferos
6.
Perception ; 53(4): 219-239, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38304994

RESUMO

This study investigates the crossmodal associations between naturally occurring sound textures and tactile textures. Previous research has demonstrated the association between low-level sensory features of sound and touch, as well as higher-level, cognitively mediated associations involving language, emotions, and metaphors. However, stimuli like textures, which are found in both modalities have received less attention. In this study, we conducted two experiments: a free association task and a two alternate forced choice task using everyday tactile textures and sound textures selected from natural sound categories. The results revealed consistent crossmodal associations reported by participants between the textures of the two modalities. They tended to associate more sound textures (e.g., wood shavings and sandpaper) with tactile surfaces that were rated as harder, rougher, and intermediate on the sticky-slippery scale. While some participants based the auditory-tactile association on sensory features, others made the associations based on semantic relationships, co-occurrence in nature, and emotional mediation. Interestingly, the statistical features of the sound textures (mean, variance, kurtosis, power, autocorrelation, and correlation) did not show significant correlations with the crossmodal associations, indicating a higher-level association. This study provides insights into auditory-tactile associations by highlighting the role of sensory and emotional (or cognitive) factors in prompting these associations.


Assuntos
Percepção do Tato , Tato , Humanos , Som , Semântica , Atenção
7.
Brain Cogn ; 175: 106138, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38335922

RESUMO

Among other bodily signals, the perception of sensations arising spontaneously on the skin with no external triggers contributes to body awareness. The topic of spontaneous sensations (SPS) being quite recent in the literature, there is still a debate whether this phenomenon is elicited by peripheral cutaneous units' activity underlying tactile perception or originates directly from central mechanisms. In a first experiment, we figured that, if SPS depended on peripheral afferents, their perception on the glabrous hand should relate to the hand tactile sensitivity. On the contrary, we found no relationship at all, which led us to envisage the scenario of SPS in the absence of cutaneous units. In a second experiment, we present the case of Julie, a right-hand amputee that could perceive and report SPS arising on her phantom limb syndrome. We found that SPS distribution on the phantom limb followed the same gradient as that observed in control participants, unlike SPS perceived on the intact left hand. Those findings are crucial to the understanding of neural factors determining body awareness through SPS perception and provide insights into the existence of a precise neural gradient underlying somesthesis.


Assuntos
Membro Fantasma , Percepção do Tato , Feminino , Humanos , Sensação , Mãos , Conscientização
8.
Iperception ; 15(1): 20416695241227857, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38404740

RESUMO

Human locomotion is most naturally achieved through walking, which is good for both mental and physical health. To provide a virtual walking experience to seated users, a system utilizing foot vibrations and simulated optical flow was developed. The current study sought to augment this system and examine the effect of an avatar's cast shadow and foot vibrations on the virtual walking experience and cybersickness. The omnidirectional movie and the avatar's walking animation were synchronized, with the cast shadow reflecting the avatar's movement on the ground. Twenty participants were exposed to the virtual walking in six conditions (with/without foot vibrations and no/short/long shadow) and were asked to rate their sense of telepresence, walking experience, and occurrences of cybersickness. Our findings indicate that the synchronized foot vibrations enhanced telepresence as well as self-motion, walking, and leg-action sensations, while also reducing instances of nausea and disorientation sickness. The avatar's cast shadow was found to improve telepresence and leg-action sensation, but had no impact on self-motion and walking sensation. These results suggest that observation of the self-body cast shadow does not directly improve walking sensation, but is effective in enhancing telepresence and leg-action sensation, while foot vibrations are effective in improving telepresence and walking experience and reducing instances of cybersickness.

9.
Small ; 20(1): e2302440, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37668280

RESUMO

The perception of temperature and pressure of skin plays a vital role in joint movement, hand grasp, emotional expression, and self-protection of human. Among many biomimetic materials, ionic gels are uniquely suited to simulate the function of skin due to its ionic transport mechanism. However, both the temperature and pressure sensing are heavily dependent on the changes in ionic conductivity, making it impossible to decouple the temperature and pressure signals. Here, a pressure-insensitive and temperature-modulated ion channel is designed by synergistic strategies for gel skeleton's compact packing and ultra-thin structure, mimicking the function of the temperature ion channel in human skin. This ion-confined gel can completely suppress the pressure response of the temperature sensing layer. Furthermore, a temperature-pressure decoupled ionic sensor is fabricated and it is demonstrated that the ionic sensor can sense complex signals of temperature and pressure. This novel and effective approach has great potential to overcome one of the current barriers in developing ionic skin and extending its applications.


Assuntos
Biomimética , Percepção do Tato , Humanos , Temperatura , Tato/fisiologia , Canais Iônicos
10.
ACS Appl Mater Interfaces ; 16(1): 998-1004, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38117011

RESUMO

The artificial tactile perception system of this work utilizes a fully connected spiking neural network (SNN) comprising two layers. Its architecture is streamlined and energy-efficient as it directly integrates spiking tactile neurons with piezoresistive sensors and Pt/NbOx/TiN memristors as input neurons. These spiking tactile neurons possess the ability to perceive and integrate pressure stimuli from multiple sensors and encode the information into rate-coded electrical spikes, closely resembling the behavior of a biological tactile neuron. The system's real-time information processing capability is demonstrated through an artificial perceptual learning system that successfully encodes and decodes the Morse code; the artificial perceptual learning system accurately recognizes and displays 26 English letters. Furthermore, the artificial tactile perception system is evaluated for the recognition of the MNIST data set, achieving a classification accuracy of 85.7% with the supervised spiking-rate-dependent plasticity learning rule. The key advantages of this artificial tactile perception system are its simple structure and high efficiency, which contributes to its practicality for various real-world applications.


Assuntos
Redes Neurais de Computação , Percepção do Tato , Aprendizagem/fisiologia , Neurônios/fisiologia , Tato
11.
Small ; : e2307810, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38050940

RESUMO

The technical synergy between flexible sensing paper and triboelectric nanogenerator (TENG) in the next stage of artificial intelligence Internet of Things engineering makes the development of intelligent sensing paper with triboelectric function very attractive. Therefore, it is extremely urgent to explore functional papers that are more suitable for triboelectric sensing. Here, a cellulose nanocrystals (CNCs) reinforced PVDF hybrid paper (CPHP) is developed by electrospinning technology. Benefitting from the unique effects of CNCs, CPHP forms a solid cross-linked network among fibers and obtains a high-strength (25 MPa) paper-like state and high surface roughness. Meanwhile, CNCs also improve the triboelectrification effect of CPHP by assisting the PVDF matrix to form more electroactive phases (96% share) and a higher relative permittivity (17.9). The CPHP-based TENG with single electrode configuration demonstrates good output performance (open-circuit voltage of 116 V, short-circuit current of 2.2 µA and power density of 91 mW m-2 ) and ultrahigh pressure-sensitivity response (3.95 mV Pa-1 ), which endows CPHP with reliable power supply and sensing capability. More importantly, the CPHP-based flexible self-powered tactile sensor with TENG array exhibits multifunctional applications in imitation Morse code compilation, tactile track recognition, and game character control, showing great prospects in the intelligent inductive device and human-machine interaction.

12.
Nanomicro Lett ; 16(1): 11, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37943399

RESUMO

Humans can perceive our complex world through multi-sensory fusion. Under limited visual conditions, people can sense a variety of tactile signals to identify objects accurately and rapidly. However, replicating this unique capability in robots remains a significant challenge. Here, we present a new form of ultralight multifunctional tactile nano-layered carbon aerogel sensor that provides pressure, temperature, material recognition and 3D location capabilities, which is combined with multimodal supervised learning algorithms for object recognition. The sensor exhibits human-like pressure (0.04-100 kPa) and temperature (21.5-66.2 °C) detection, millisecond response times (11 ms), a pressure sensitivity of 92.22 kPa-1 and triboelectric durability of over 6000 cycles. The devised algorithm has universality and can accommodate a range of application scenarios. The tactile system can identify common foods in a kitchen scene with 94.63% accuracy and explore the topographic and geomorphic features of a Mars scene with 100% accuracy. This sensing approach empowers robots with versatile tactile perception to advance future society toward heightened sensing, recognition and intelligence.

13.
J Physiol ; 601(24): 5777-5794, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37942821

RESUMO

Individual differences in tactile acuity have been correlated with age, gender and finger size, whereas the role of the skin's stiffness has been underexplored. Using an approach to image the 3-D deformation of the skin surface during contact with transparent elastic objects, we evaluate a cohort of 40 young participants, who present a diverse range of finger size, skin stiffness and fingerprint ridge breadth. The results indicate that skin stiffness generally correlates with finger size, although individuals with relatively softer skin can better discriminate compliant objects. Analysis of contact at the skin surface reveals that softer skin generates more prominent patterns of deformation, in particular greater rates of change in contact area, which correlate with higher rates of perceptual discrimination of compliance, regardless of finger size. Moreover, upon applying hyaluronic acid to soften individuals' skin, we observe immediate, marked and systematic changes in skin deformation and consequent improvements in perceptual acuity in differentiating compliance. Together, the combination of 3-D imaging of the skin surface, biomechanics measurements, multivariate regression and clustering, and psychophysical experiments show that subtle distinctions in skin stiffness modulate the mechanical signalling of touch and shape individual differences in perceptual acuity. KEY POINTS: Although declines in tactile acuity with ageing are a function of multiple factors, for younger people, the current working hypothesis has been that smaller fingers are better at informing perceptual discrimination because of a higher density of neural afferents. To decouple relative impacts on tactile acuity of skin properties of finger size, skin stiffness, and fingerprint ridge breadth, we combined 3-D imaging of skin surface deformation, biomechanical measurements, multivariate regression and clustering, and psychophysics. The results indicate that skin stiffness generally correlates with finger size, although it more robustly correlates with and predicts an individual's perceptual acuity. In particular, more elastic skin generates higher rates of deformation, which correlate with perceptual discrimination, shown most dramatically by softening each participant's skin with hyaluronic acid. In refining the current working hypothesis, we show the skin's stiffness strongly shapes the signalling of touch and modulates individual differences in perceptual acuity.


Assuntos
Percepção do Tato , Tato , Humanos , Ácido Hialurônico , Pele , Envelhecimento , Dedos
14.
Iperception ; 14(6): 20416695231214954, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38033429

RESUMO

We investigated participants' ability to differentiate between random and organized two-dimensional tactile tiles with embossed dots and examined how this ability varies with size and participant age. Four experiments were conducted to evaluate the effect of these variations on participants' capacity to utilize touch in identifying which of two stimuli exhibited greater randomness. Participants were instructed to explore embossed tiles using both hands. The tiles had varying levels of randomness from organized to random sets. In Experiments 1, 2, and 4, the sets were of equal size, while in Experiment 3, they differed in size. Results revealed a significant difference between the random and organized sets, with random stimuli being more easily discernible. These findings suggest that touch can be utilized to discern random patterns on tactile maps or displays. However, older participants encountered difficulties making this distinction, indicating similarities between vision and touch in perceiving randomness.

16.
Proc Inst Mech Eng H ; 237(9): 1072-1081, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37615312

RESUMO

A multitude of sensory modalities are involved in humans' experience of wetness, yet we know little of the integratory role of vision. Therefore, the aim was to quantify the effect of physical stain volume, chroma and size on wetness perception, and to compare wetness perception under different sensory conditions, including visuotactile and visual only interactions. Eighteen participants visually observed and/or used their index fingerpad to dynamically interact with stimuli varying in physical wetness (0, 2.16 × 10-4 or 3.45 × 10-4 ml mm-2), stain chroma (clear, light, dark) and stain size (1150 or 5000 mm2). After interaction participants rated wetness perception using a visual analogue scale (very dry to very wet). In visual only conditions participants were able to differentiate between dry and wet stimuli, and could also discriminate between different magnitudes of wetness with the addition of tactile cues. In both visual only and visuotactile conditions greater stain chroma resulted in increased wetness perception. Stain size did not have a significant effect in either condition. These results show that visual cues influence wetness perception (R2 = 0.29), but indicate that visual dominance does not apply in these sensory integrations. Findings are relevant for the design of products with wetness management properties.


Assuntos
Percepção Visual , Humanos
17.
Front Neural Circuits ; 17: 1197278, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37529715

RESUMO

Introduction: On Earth, self-produced somatosensory stimuli are typically perceived as less intense than externally generated stimuli of the same intensity, a phenomenon referred to as somatosensory attenuation (SA). Although this phenomenon arises from the integration of multisensory signals, the specific contribution of the vestibular system and the sense of gravity to somatosensory cognition underlying distinction between self-generated and externally generated sensations remains largely unknown. Here, we investigated whether temporary modulation of the gravitational input by head-down tilt bed rest (HDBR)-a well-known Earth-based analog of microgravity-might significantly affect somatosensory perception of self- and externally generated stimuli. Methods: In this study, 40 healthy participants were tested using short-term HDBR. Participants received a total of 40 non-painful self- and others generated electrical stimuli (20 self- and 20 other-generated stimuli) in an upright and HDBR position while blindfolded. After each stimulus, they were asked to rate the perceived intensity of the stimulation on a Likert scale. Results: Somatosensory stimulations were perceived as significantly less intense during HDBR compared to upright position, regardless of the agent administering the stimulus. In addition, the magnitude of SA in upright position was negatively correlated with the participants' somatosensory threshold. Based on the direction of SA in the upright position, participants were divided in two subgroups. In the subgroup experiencing SA, the intensity rating of stimulations generated by others decreased significantly during HDBR, leading to the disappearance of the phenomenon of SA. In the second subgroup, on the other hand, reversed SA was not affected by HDBR. Conclusion: Modulation of the gravitational input by HDBR produced underestimation of somatosensory stimuli. Furthermore, in participants experiencing SA, the reduction of vestibular inputs by HDBR led to the disappearance of the SA phenomenon. These findings provide new insights into the role of the gravitational input in somatosensory perception and have important implications for astronauts who are exposed to weightlessness during space missions.


Assuntos
Vestíbulo do Labirinto , Ausência de Peso , Humanos , Repouso em Cama , Decúbito Inclinado com Rebaixamento da Cabeça , Vestíbulo do Labirinto/fisiologia , Percepção
18.
J Neurosci Methods ; 397: 109938, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37544383

RESUMO

BACKGROUND: Primates use their hands to actively touch objects and collect information. To study tactile information processing, it is important for participants to experience tactile stimuli through active touch while monitoring brain activities. NEW METHOD: Here, we developed a pneumatic tactile stimulus delivery system (pTDS) that delivers various tactile stimuli on a programmed schedule and allows voluntary finger touches during MRI scanning. The pTDS uses a pneumatic actuator to move tactile stimuli and place them in a finger hole. A photosensor detects the time when an index finger touches a tactile stimulus, enabling the analysis of the touch-elicited brain responses. RESULTS: We examined brain responses while the participants actively touched braille objects presented by the pTDS. BOLD responses during tactile perception were significantly stronger in a finger touch area of the contralateral somatosensory cortex compared with that of visual perception. CONCLUSION: The pTDS enables MR studies of brain mechanisms for tactile processes through natural finger touch.


Assuntos
Percepção do Tato , Tato , Animais , Tato/fisiologia , Imageamento por Ressonância Magnética , Percepção do Tato/fisiologia , Dedos/fisiologia , Encéfalo/diagnóstico por imagem , Córtex Somatossensorial/diagnóstico por imagem , Córtex Somatossensorial/fisiologia
19.
Carbohydr Polym ; 319: 121196, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37567723

RESUMO

Customizable structures and patterns are becoming powerful tools for biomimetic design and application of soft materials. The construction of long-range ordered self-wrinkled structures on multi-dimensional and complex-shaped surfaces with facile, fast and efficient strategies still faces serious challenges. During the stretch-recovery process, the carboxyl groups in the polyacrylamide/sodium alginate dual network gel form robust coordination with Fe3+ to achieve a hard shell layer, resulting in a modulus mismatch between the inner soft layer and the outer hard layer, thereby forming a wrinkled surface. This flexible strategy allows simultaneous construction of complex topologies from 1D to 3D wits well-organized microstructure and controllable dimensions. The mechanism of the influence of ion treating time and pre-stretching ratio on wrinkle wavelength was explored in detail. The finite element simulations matched well with the experimental results. Due to the unique surface and dual crosslinking network, the self-wrinkled hydrogel maintains a high sensitivity of up to 67.47 kPa-1 in 1000 compression cycles. As a high-sensitivity pressure sensor integrated into the detection system, it can be efficiently applied to the contact dynamic tactile perception and monitoring of various movement behaviors of the human body.

20.
Small ; 19(37): e2303304, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37150841

RESUMO

Fingerprints possess wide applications in personal identification, tactile perception, access control, and anti-counterfeiting. However, latent fingerprints are usually left on touched surfaces, leading to the leakage of personal information. Furthermore, tactile perception greatly decreases when fingerprints are covered by gloves. Customized fingerprints are developed to solve these issues, but it is a challenge to develop fingerprints with various customized patterns using traditional techniques due to their requiring special templates, materials, or instruments. Inspired by ripples on the lake, blowing air is used to generate surface waves on a colloidal polyelectrolyte complex, leading to vertical stratification and the accumulation of particles near the top of the film layer. As water rapidly evaporates, the viscosity of these particles significantly increases and the wave is solidified, forming fingerprint patterns. These customized fingerprints integrate functions of grasping objects, personal identification without leaving latent fingerprints and tactile perception enhancement, which can be applied in information security, anti-counterfeiting, tactile sensors, and biological engineering.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...